Рус Eng During last 365 days Approved articles: 2338,   Articles in work: 288 Declined articles: 901 
Library
Articles and journals | Tariffs | Payments | Your profile

Мухаметзянов И.З. Application of fuzzy inference & fuzzy AHP approach for evaluating the dependability of the equipment.

Published in journal "Кибернетика и программирование", 2017-2 , pages 59-77.

Resume:  The object of study involves fuzzy logical multi-criterion methods and algorithms within the support systems for the decision making. The immediate object of study involves support systems for decision making in the sphere of dependability of technical equipment systems in the situation of fuzzy information input. The purpose of the study is to provide methodological basis for the development of applied fuzzy systems for the traditional priority studies for the multiple objects in the multi-dimensional set of quantity and quality markers based upon the linguistic statements by the experts. The article provides for the methodology of development for the support system for the decision-making  in the conditions of non-precise information with the use of fuzzy theory of sets and fuzzy methods for the hierarchy analysis. The author provides detailed analysis for several aspects of the topic in question, such as application of decision-making methods for multi-criteria alternative analysis, such as the fuzzy inference and the hierarchy analysis method for fuzzy proximities. The author offers the method for ranging alternatives based upon the multi-dimensional sets of facts and criteria in the situation of fuzzy data input. The methodology of studies is based upon the formation of a model for the decision-making support system, method formalization for processing fuzzy data, algorithm development and providing for the simulation experiment for various values of managing parameters within a model. The provided methodology was implemented based upon an example of the support system for the decision-making  for the expert procedure for the evaluation of general dependability of chemical technological systems.  Implementation of fuzzy logic procedures when managing a complex of dependability markers is based upon the results of expert evaluation of four separate industrial objects within a single complicated technical system of oil and gas chemical production based upon five dependability criteria. Taking an example of the hierarchical structure for dependability of oil and gas equipment, the author offers a model and an algorithm for the evaluation for deriving weights with the use of a fuzzy pairwise comparison matrix based upon the judgment matrix. The experimental calculation results show that the fuzzy pairwise comparison method  is efficient with greater degrees of priority fuzziness 50 to 75 percent. Efficiency of the judgment matrix depends upon the evaluation closeness or incoming linguistic values, however, it is completely dependent upon the correct formalization of data input via formation of the membership functions as well as on the formation of fuzzy rule bases. Fuzzy logical algorithms for decision making support in the sphere of managing the complex of dependability markers for the oil and gas equipment form a non-formalized part of the complex management and support systems for ensuring industrial equipment dependability. Such sub-systems allow for the preliminary evaluation of the general situation in the sphere of equipment dependability based upon the expert information.

Keywords: judgment matrix, triangular fuzzy numbers, fuzzy inference, deriving weights, ranking alternatives, decision making, judgment matrix FAHP, computer simulations, equipment dependability, fuzzy analytic hierarchy

DOI: 10.7256/2306-4196.2017.2.21794

This article is unavailable for unregistered users. Click to login or register

Bibliography:
Эшби Р. Введение в кибернетику. – М.: КомКнига, 2005. – 432 с.
Месарович М., Мако Д., Такахара М. Теория иерархических многоуровневых систем. – М.: Мир, 1973. – 344 с.
Figueira J., Greco S. and Ehrgott M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. – New York: Springer Science & Business Media, 2005. – 1045 pp.
Wallenius J., Dyer J. S., Fishburn P. C., Steuer R. E., Zionts S. and Deb K. Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead // Management Science. – 2008. – V. 54(7). – P. 1336-1349.
Roy B. Multicriteria Methodology for Decision Aiding. – Boston: Springer, 1996.– 316 pp.
Saaty T. L. The Analytic Hierarchy Process. – New York: McGraw-Hill, 1980. – 296 pp.
Саати Т. Принятие решений. Метод анализа иерархий. – М.: Радио и связь, 1993. – 278 с.
Заде Л. Понятие лингвистической переменной и ее применение к принятию приближенных решений. – М.: Мир, 1976. – 167 с.
Кофман А. Введение в теорию нечетких множеств. – М.: Радио и связь, 1982. – 432 с.
Kaufman А., Gupta M. M. Fuzzy Mathematical Models in Engineering and Management Science. – North-Holland, Amsterdam. – 1988. – 338 pp.
Chang D.Y. Applications of the extent analysis method on fuzzy AHP // European Journal of Operational Research. – 1996. – V. 95. – № 3. – P. 649-655.
Chang D.Y. Extent analysis and synthetic decision, optimization techniques and applications, Vol. 1, Singapore: World Scientific, 1992. – 352 pp.
Zhu K. J., Jing D. Y. A discussion on extent analysis method and applications of fuzzy AHP // European Journal of Operational Research. – 1999. – V. 116. – P. 450-456.
Дегтярев А.Н., Мухаметзянов И.З., Рожкова Н.В. Методология построения иерархической системы показателей развития в сфере туристического бизнеса на основе нечетко-логических процедур принятия решений // Теоретическая и прикладная экономика. – 2016.-№ 1.-С.45-57. DOI: 10.7256/2409-8647.2016.1.19102. URL: http://e-notabene.ru/etc/article_19102.html
Mamdani E. H. and Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller // Int. J. Man-Mach. Stud. – 1975. – V. 7. – P. 1-13,
Takagi T. and Sugeno M. Fuzzy identification of systems and its applications to modeling and control // IEEE Tran. Syst., Man, Cybern. –1985. – V. SMC 15. – P. 116-132.
Zimmermann H.J. Fuzzy Set Theory and Its Application; Kluwer Academic Publishers: London, UK, 1991. – 514 pp.
Мухаметзянов И.З., Мешалкин В.П. Имитационная многоагентная нечетко-логическая модель принятия маркетинговых решений промышленного предприятия в условиях неопределенности // Прикладная информатика. – 2014. – №3 (51). – С. 100-109.
Мухаметзянов И.З., Мешалкин В.П. Нечетко-логическая процедура прогнозирования развития нефтеперерабатывающих предприятий в условиях неопределенности // Нефтегазовое дело. – 2014. – №4. – С. 126-133.
Yang, C.-C., & Chen, B.-S. (). Key quality performance evaluation using fuzzy AHP // Journal of the Chinese Institute of Industrial Engineers. – 2004. – V. 21(6) . – P. 543-550.
Buckley J.J. Fuzzy Hierarchical Analysis // Fuzzy Sets and Systems. – 1985. – V. 17. – P. 233-247.
Коробов В.Б. Сравнительный анализ методов определения весовых коэффициентов «влияющих факторов» // Социология: 4M. – 2005. – №20. – С.54-73.
Hwang C.-L., & Yoon K. Multiple attribute decision making: methods and applications. In Lecture notes in economics and mathematical systems. Now York: Springer, 1981. – 259 pp.
Wang T.-C., Chang T.-H. Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment // Expert Systems with Applications. – 2007. – V. 33. – P. 870-880.
Российский статистический ежегодник. 2015: Стат.сб./Росстат. – Р76. М.: 2015. – 728 с.
Годовой отчет о деятельности Федеральной службы по экологическому, технологическому и атомному надзору в 2014 году // Федеральная служба по экологическому, технологическому и атомному надзору. М.: 2014. – 442 с.
ГОСТ 27.002-89. Надежность в технике. Основные понятия. Термины и определения. М.: МНТК "Надежность машин". 1988. – 58 с.
ГОСТ 27.301-95. Надежность в технике. Расчет надежности. Основные положения.
Кафаров В.В., Мешалкин В.П. Надежность оборудования и технологических схем химических и нефтехимических производств. – М.: Химия, 1979. – 167 с.
Мешалкин В.П. Экспертные системы в химической технологии. – М.: Химия, 1995. – 367 с.

Correct link to this article:
just copy this link to clipboard