Рус Eng During last 365 days Approved articles: 1911,   Articles in work: 307 Declined articles: 810 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Changes of hydrothermal climate resources of the Arctic in the context of global warming of the 21st century
Surkova Galina Vyacheslavovna

PhD in Geography

Associate Professor at the Department of Meteorology and Climatology of the Faculty of Geography of Moscow State University 

119991, Russia, Moscow, ul. Leninskie Gory, 1

galina_surkova@mail.ru
Krylov Aleksei Andreevich

Assistant at the Department of Meteorology and Climatology of Moscow State University 

119991, Russia, g. Moscow, ul. Leninskie Gory, 1

aloshakrylov@bk.ru

Abstract.

The author studies the change of climate resources of the Arctic in the context of global warming, forecast in the 21st century. The authors pay special attention to the values of climate resources, calculated on the base of temperature and precipitation values. The article studies daily points of extremum of surface air temperature, yearly amounts of air temperatures in different ranges and the longevity of periods with such temperatures, fuel performance index, amount and type of precipitations at different air temperatures, and the number of days with such precipitations. Climate resources are calculated on the base of a climate forecast of a group of climate models of the CMIP5 project for the RCP8.5. scenario. To estimate climate resources, the authors use daily model data about air temperature and precipitation total for the period of 1950-2100. in latitudinal zone of 60-90 degrees of north latitude. The authors of the present study are the first to acquire the results of a complex forecast of climate resources of the Arctic. The study shows that, in the context of global warming, the spatial heterogeneity of the forecast anomalies of climate resources is well-defined. The most vivid changes of hydrothermal climate resources by the end of the 21st century are expected above the Northern Atlantic, the seas of Western Europe, the Barents and the Chukchi seas. The least significant changes are expected above Greenland. 

Keywords: precipitation, temperature, global warming, climate models, climate forecast, the Arctic, climate resources, regional analysis, indexes, daily points of extremum

DOI:

10.7256/2453-8922.2017.1.22265

Article was received:

14-03-2017


Review date:

14-03-2017


Publish date:

02-04-2017


This article written in Russian. You can find full text of article in Russian here .

References
1.
Alekseev G.V., Bol'shiyanov D.Yu., Radionov V.F., Frolov S.V. 95 let issledovanii klimata i kriosfery Arktiki v AANII // Led i sneg. 2015. T. 55. № 4. S. 127-140.
2.
Anisimov O. A., Kokorev V. A. Ob optimal'nom vybore gidrodinamicheskikh modelei dlya otsenki vliyaniya izmenenii klimata na kriosferu // Led i Sneg. 2013. № 1 (121). S. 83―92.
3.
Baburin V.L., Badina S.V., Goryachko M.D., Zemtsov S.P. Zony kontsentratsii sotsial'no-ekonomicheskogo potentsiala Arktiki // Menyayushchiisya klimat i sotsial'no-ekonomicheskii potentsial Rossiiskoi Arktiki / Pod red. S.A. Sokratova. Liga-Vent. Moskva. 2015. S. 74-126.
4.
Volodin E.M., Dianskii N.A., Gusev A.V. Vosproizvedenie i prognoz klimaticheskikh izmenenii v XIX–XXI vekakh s pomoshch'yu modeli zemnoi klimaticheskoi sistemy IVM RAN // Izvestiya RAN. Fizika atmosfery i okeana. 2013. T.49. № 4. S. 379–400.
5.
Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. M.: Rosgidromet. 2014. – 1008 s.
6.
Goryachko M.D. Khozyaistvennyi potentsial rossiiskoi Arktiki // Menyayushchiisya klimat i sotsial'no-ekonomicheskii potentsial Rossiiskoi Arktiki / Pod red. S.A. Sokratova. Liga-Vent. Moskva. 2015. S. 197-219.
7.
Eliseev A.V., Semenov V.A. Izmeneniya klimata Arktiki v XXI veke: ansamblevye model'nye otsenki s uchetom realistichnosti vosproizvedeniya sovremennogo klimata // Doklady AN. 2016. T. 471. № 2. S. 214-218.
8.
Kislov A.V., Evstigneev V.M., Malkhazova S.M., Sokolikhina N.N., Surkova G.V., Toropov P.A., Chernyshev A.V., Chumachenko A.N. Prognoz klimaticheskoi resursoobespechennosti Vostochno-Evropeiskoi ravniny v usloviyakh potepleniya XXI veka. M.: Maks-Press, 2008. – 292 s.
9.
Meleshko V.P., Govorkova V.A. Uspeshnost' rascheta sovremennogo regional'nogo klimata s pomoshch'yu ansamblya modelei CMIP3 i CMIP5 // Trudy GGO. Vyp. 568. 2013. S. 26–50.
10.
Pavlova T. V., Kattsov V. M., Meleshko V. P., Shkol'nik I. M., Govorkova V. A., Nadezhina E. D. Novoe pokolenie klimaticheskikh modelei // Trudy GGO. Vyp. 575. 2014. S. 5–64.
11.
Semenov V.A., Mokhov I.I., Polonskii A.B. Modelirovanie vliyaniya estestvennoi dolgoperiodnoi izmenchivosti v Severnoi Atlantike na formirovanie anomalii klimata // Mor. gidrofiz.zhurn. 2014. № 4. S, 14-27.
12.
Semenov E.K., Sokolikhina N.N., Tudrii K.O. Teplaya zima v rossiiskoi Arktike i anomal'nye kholoda v Evrope // Meteorologiya i gidrologiya. 2013. № 9. S. 43-54.
13.
Semenov E.K., Sokolikhina N.N., Tudrii K.O., Shchenin M.V. Sinopticheskie mekhanizmy zimnego potepleniya v Arktike // Meteorologiya i gidrologiya. 2015. № 9. S. 20-30.
14.
Ekologo-geograficheskie posledstviya global'nogo potepleniya klimata XXI veka na Vostochno-Evropeiskoi ravnine i v Zapadnoi Sibiri / Pod red. N.S. Kasimova, A.V. Kislova. M: MAKS Press. 2011. 496 s.
15.
Entsiklopediya klimaticheskikh resursov Rossiiskoi Federatsii / Pod red. N.V. Kobyshevoi. – SPb.: Gidrometeoizdat. 2005. 319 s.
16.
Bader J., M. D. Mesquita, K. I. Hodges, N. Keenlyside, S. Østerhus, and M. Miles. A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes // Atmos. Res. 2011. V. 101. P. 809–834.
17.
Barichivich, J., K.R. Briffa, R.B. Myneni, et al.. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011 // Global Change Biology. 2013. 19. P. 3167–3183.
18.
Bekryaev R.V., Polyakov I.V., Alexeev V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming // J. Climate. 2010. V. 23. № 14. P. 3888–3906.
19.
Bintanja R., Selten F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat // Nature. 2014. V. 509. P. 479–491.
20.
Bokhorst S., Pedersen S. H., Brucker L. et al. Changing arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts // Ambio. — 2016. — Vol. 45, no. 5. — P. 516–537.
21.
Budikova D. Role of Arctic sea ice in global atmospheric circulation: A review // Global Planet. Change. 2009. V. 68. 149–163.
22.
Cohen J. L. et al. Recent Arctic amplification and extreme mid-latitude weather // Nat. Geosci. 2014. V. 7 P. 627–637.
23.
Derksen, C., R. Brown, L. Mudryk, and K. Luojus. Arctic: Terrestrial Snow. State of the Climate in 2014. J. Blunden and D.S. Arndt // Bulletin of the American Meteorological Society. 2015. 96. P. 133–135.
24.
Eliseev A.V., Mokhov I.I. Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios // Adv. Atmos. Sci. 2011. V. 28. № 5. P. 1215–1232.
25.
Francis, J. A., Vavrus S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes // Geophys. Res. Lett. 2012. V. 39. L06801.
26.
IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley. ― Cambridge University Press. Cambridge, United Kingdom and New York, USA. 2013. 1535 p.
27.
Lindsay, R., Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations // Cryosphere. 2015. V. 9. P. 269–283.
28.
Liston, G.E., and C.A. Hiemstra. The changing cryosphere: Pan-Arctic snow trends (1979–2009) // Journal of Climate. 2011. 24. P.5691–5712.
29.
Moss R. H., Babiker M., Brinkman S., Calvo E., Carter T., Edmonds J., Elgizouli I., Emori S., Erda L., Hibbard K., Jones R., Kainuma M., Kelleher J., Lamarque J.F., Manning M., Matthews B., Meehl J., Meyer L., Mitchell J., Nakicenovic N., O’Neill B., Pichs R., Riahi K., Rose S., Runci P., Stouffer R., van Vuuren D., Weyant J., Wilbanks T., van Ypersele J.P., Zurek M. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change. Geneva. 2008. 132 pp.
30.
Perovich D. K., S. Gerland, S. Hendricks,W.Meier,M. Nicolaus, and M. Tschudi, 2014: Sea ice. Arctic Report Card 2014. NOAA. [Available online at http://www.arctic.noaa.gov/report14/.]
31.
Petoukhov V., V. A. Semenov. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents // J. Geophys. Res. 2010. V. 115. D21111.
32.
Screen J.A., Simmonds I. The Atmospheric Response to Three Decades of Observed Arctic Sea Ice Loss // Journal of climate. 2013. V.26. P. 1230-1248.
33.
Semenov V.A., Latif M. The early twentieth century warming and winter Arctic sea ice // The Cryosphere. 2012. V. 6. № 6. P. 1231–1237.
34.
Semenov V.A., Park W., Latif M. Barents Sea inflow shutdown: A new mechanism for rapid climate changes // Geophys. Res. Lett. – 2009. – 36, L14709
35.
Taylor K. E., Stouffer R. J., Meehl G. A. The CMIP5 experiment design. Bull. Amer. Meteor. Soc. 2012. V. 93. P. 485–498.
36.
Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review // Surv. Geophys. 2014. V. 35. P. 1175–1214.
37.
Walsh, J. E. Intensified warming of the Arctic: Causes and impacts on middle latitudes. // Global Planet. Change. 2014. V. 117. P. 52–63.