Рус Eng During last 365 days Approved articles: 2338,   Articles in work: 288 Declined articles: 901 
Library
Articles and journals | Tariffs | Payments | Your profile

Чернышев Ю.О., Венцов Н.Н., Долматов А.А. Development of an approach operating with the triangular expression of fuzzy numbers based on the PSO-algorithm.

Published in journal "Кибернетика и программирование", 2017-2 , pages 1-7.

Resume: The object of studies involves intellectual algorithm for solving optimization problems. It is known that for the same type of project procedures some cases require exact solutions, while others allow for approximate solutions. For this reason the issue of managing the exactness of the approximate solutions is so topical. An approximate solution may be regarded as some sphere of dots, each of them being a possible problem solution.  It is supposed that at the early stages of solving optimization problems, it is possible to operate fuzzy ranges, while gradually narrowing the search area. The authors offer an approach, which complements the well-known algorithm of particle swarm optimization with the possibility to process fuzzy numbers with the triangular expression. The current multi-agent methods for the adaptive search for the optimization solutions are developed towards improvement of the interaction among the agents.  For example, the well-known particle swarm optimization methods (PSO) is based upon the idea of population and it models the behavior of the birds in a flock or fish in a shoal. At the same time classic bio-inspired methods for finding solutions usually operate with clear solutions. The authors have developed the  modification of the PSO algorithm thanks to performance of a number of known operations with the fuzzy numbers involving triangular expressions. The special feature of this approach is organization of the intellectual searching process  in a fuzzy solution space. Its  originality is due to the development of the method for the movement of an agent (group of agents) within the area formed with the triangular expression of fuzzy numbers. This approach allows for searching for solutions in fuzzy spaces, operating with the variables of the "close to X" type, avoiding the linguistic analysis.

Keywords: optimization, vague estimates, swarm optimization method, search area, fuzzy operations, evolutionary method, swarm optimization methods, fuzzy multitudes, adaptation, evolution method

DOI: 10.7256/2306-4196.2017.2.22429

This article is unavailable for unregistered users. Click to login or register

Bibliography:
J. Jordan, S. Helwig, R. Wanka. Social interaction in particle swarm optimization, the ranked FIPS, and adaptive multi-swarms. // Proceedings of the 10th annual conference on Genetic and evolutionary computation.-Atlanta, USA, ACM, 2008, pp. 49-56.
W. Elshamy, H. M. Emara, A. Bahgat. Clubs-based Particle Swarm Optimization // Swarm Intelligence Symposium.-2007, pp. 289 – 296.
Sandeep Kumar, Pawan Bhambu, Vivek Kumar Sharma Sandeep. New Local Search Strategy in Artificial Bee Colony Algorithm // International Journal of Computer Science and Information Technologies, Vol. 5 (2), 2014, pp. 2559-2565.
Литвиненко В.А. Адаптивные алгоритмы проектных операций САПР ЭВА // IS-IT14: тр. Междунар. конгр. по интеллект. системам и информ. технологиям, п. Дивноморское, 2-9 сент./ ЮФУ. М.: Физматлит, 2014. Т.1, С. 113-119.
Eberhart R., Kennedy J. A New Optimizer using Particle Swarm Theory // In Proceedings of the Sixth International Symposium on Micro machine and Human Science 1995 – P. 39-43
Engelbrecht A. Computational intelligence: an introduction – John Wiley and Sons Ltd., 2007 – 597p.
Abraham A., Grosan G. Swarm Intelligence in Data Mining –Springer, 2006 – 267p.
Венцов Н.Н. Эволюционный подход к моделированию распределительных процессов. Инженерный вестник Дона [Электронный ресурс]: электрон. науч.-инновац. журн. –2013.-Режим доступа: http://www.ivdon.ru/magazine/archive/n4y2013/1886. –Загл. с экрана.
Борисов А.Н., Крумберг О.А., Федоров И.П. Принятие решений на основе нечетких моделей: Примеры использования. – Рига: Зинатне, 1990.– 184 с.
Искусственные иммунные системы и их применение/Под ред. Д. Дасгупты: Пер. с англ. Под ред. А.А. Романюхи.-М.: Физматлит, 2006.-344 с.
Чернышев Ю.О., Григорьев Г.В., Венцов Н.Н. Искусственные иммунные системы: обзор и современное состояние//Программные продукты и системы. 2014. № 108. С. 136-142.

Correct link to this article:
just copy this link to clipboard