Рус Eng During last 365 days Approved articles: 2160,   Articles in work: 281 Declined articles: 942 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Computational optimization of mutual transformations of color spaces based upon the arithmetic fixed-point.
Grishentsev Aleksei Yur'evich

Doctor of Technical Science

Associate Professor, St. Petersburg National Research University of Information Technologies, Mechanics and Optics

197101, Russia, St. Petersburg, Kronverkskiy prospect, d. 49

grishentcev@ya.ru
Korobeinikov Anatolii Grigor'evich

Doctor of Technical Science

Deputy Director of Science, St. Petersburg Branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

199034, Russia, Saint Petersburg, liniya Mendeleevskaya, 1

Korobeynikov_A_G@mail.ru
Yuganson Andrei Nikolaevich

graduate student, St. Petersburg National Research University of Information Technologies, Mechanics and Optics

197101, Russia, Saint Petersburg, Kronverkskii prospekt, 49

a_yougunson@corp.ifmo.ru
Abstract. In their article the authors provide their results on systematization of methods for computational optimization of the transformation of color spaces based upon the application of fixed-point arithmetic. The authors formulate the goals and analyze the key problems arising in the situation of computational optimization in the process of color space formation from the standpoint of the speed of operation increase. The principles of transition from a floating point format to a format with a fixed point are stated. The authors also provide an example for the analysis of computational optimization  for the mutual transformation of RGB and Y709CbCr. In this article the authros consider the method of computational optimization of the transformation of color spaces based on the application of fixed-point arithmetic. When applying the considered principle of practical implementation, the computation time for an image of 4134x2756 on an Intel Core 2 Duo processor becomes 18 times less. This is a very significant increase in productivity. It is not too difficult to apply this approach to other similar calculations, especially on modern 64-bit and 128-bit processors, when the necessary values fit into a single processor register.
Keywords: RGB, format with a floating point, the format with fixed point, computing optimization, mathematical coprocessor, serial processing of images, parallel processing of images, transformation, color space, image processing
DOI: 10.25136/2306-4196.2017.4.24005
Article was received: 26-08-2017

Review date: 05-09-2017

Publish date: 17-09-2017

This article written in Russian. You can find full text of article in Russian here.

References
1.
ITU-R Recommendation BT.601-7 ot 03/2011, Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios. ITU, Geneva, Switzerland, 2011.
2.
ITU-R Recommendation BT.709, Basic Parameter Values for the HDTV Standard for the Studio and International Programme Exchange [formerly CCIR Rec.709] ITU, Geneva, Switzerland, 2002.
3.
Malvar H. S., Sullivan G. J. Transform, Scaling & Color Space Impact of Professional Extensions, ISO/IEC JTC/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-H031, Geneva, May 2003.
4.
Gerber R., Bik A., Smit K., Tian K. Optimizatsiya PO. Sbornik retseptov. – SPb.: Piter, 2010. – 325 s.: il
5.
Kasperskii K. Tekhnika optimizatsii programm (+CD). S-Pb. Iz-vo: BKhV-Peterburg, 2003 g. – 464 s.:il.
6.
Korobeinikov A.G., Kudrin P.A., Sidorkina I.G. Algoritm raspoznavaniya trekhmernykh izobrazhenii s vysokoi detalizatsiei//Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Radiotekhnicheskie i infokommunikatsionnye sistemy. 2010. № 2. S. 91-98.
7.
Grishentsev A.Yu., Korobeinikov A.G. Metody i modeli tsifrovoi obrabotki izobrazhenii. – SPb. : Izd.-vo Politekhn. un-ta, 2014. – 190 s.
8.
Grishentsev A.Yu., Korobeinikov A.G. Ponizhenie razmernosti prostranstva pri korrelyatsii i svertke tsifrovykh signalov//Izvestiya vysshikh uchebnykh zavedenii. Priborostroenie. 2016. T. 59. № 3. S. 211-218.
9.
Korobeinikov A.G., Aleksanin S.A. Metody avtomatizirovannoi obrabotki izobrazhenii pri reshenii zadachi magnitnoi defektoskopii//Kibernetika i programmirovanie. 2015. № 4. S. 49-61.
10.
Korobeinikov A.G., Fedosovskii M.E., Aleksanin S.A. Razrabotka avtomatizirovannoi protsedury dlya resheniya zadachi vosstanovleniya smazannykh tsifrovykh izobrazhenii//Kibernetika i programmirovanie. 2016. № 1. S. 270-291.
11.
Grishentsev A. Yu., Korobeinikov A. G. Dekompozitsiya n-mernykh tsifrovykh signalov po bazisu pryamougol'nykh vspleskov. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2012, № 4 (80).–S. 75-79
12.
Grishentsev A. Yu. Effektivnoe szhatie izobrazhenii na baze differentsial'nogo analiza. Rossiiskaya akademiya nauk «Zhurnal radioelektroniki» http://jre.cplire.ru/jre/nov12/index.html, [elektronnyi resurs]// elektronnyi zhurnal, ISSN 1684-1719, №11-noyabr' 2012 g.
13.
Grishentsev A. Yu. Sposob szhatiya izobrazheniya. // Patent № 2500067, zayavka № 2012107969/08, prioritet izobreteniya 01.03.2012, zaregistrirovano v Gosudarstvennom reestre izobretenii RF 27.11.2013.
14.
Grishentsev A. Yu., Korobeinikov A. G. Postanovka zadachi optimizatsii raspredelennykh vychislitel'nykh sistem // Programmnye sistemy i vychislitel'nye metody. — 2013.-№ 4.-S.370-375.
15.
Grishentsev A.Yu. Modelirovanie raspredeleniya plotnosti toka v slozhnom neodnorodnom provodnike. Chast' 1 // Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki. 2006. № 29. S. 87-94.
16.
Brei B. Mikroprotsessory Intel: 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro, Pentium II, Pentium III, Pentium IV. Arkhitektura, programmirovanie, interfeisy. Shestoe izdanie: Per. s angl. – SPb.: BKhV-Peterburg, 2005. – 1328 s.: il.