Eng During last 365 days Approved articles: 1995,   Articles in work: 343 Declined articles: 789 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Analysis of software for implementing fuzzy expert systems
Glushenko Sergey Andreevich

PhD in Economics

associate professor of the Department of Information Systems and Applied Computer Sciences at Rostoc State University of Economics

344002, Russia, Rostov-on-Don, str. Bol'shaya Sadovaya, 69, of. 308

gs-gears@yandex.ru

 

 

Abstract.

The research focuses on enterprises and organizations of various industries, leading project-oriented business. The subject of the study are the decision-making processes that are present in the implementation of various projects. Increasing the effectiveness of decisions can be achieved through the use of expert systems. At the same time, the expert system should be based on modern methods of processing information in conditions of uncertainty. The author suggests using expert systems based on methods and models of fuzzy logic. Particular attention in the article the author pays to the functional requirements, which must correspond to fuzzy expert system. The author examines in detail the existing list of software for the implementation of fuzzy expert system, and to identify the optimal software which meets the requirements, the method of analysis of complex systems by the criterion of functional completeness of Professor G.N. Khubaeva.As a result of the analysis it was established that the existing software solutions do not meet the functional requirements in many respects, therefore the development of a new and effective tool is an actual task.The analysis also made it possible to identify software tools with a similar set of functions, to estimate the degree of similarity and the degree of correspondence of the systems of the "reference" model of the information system that takes into account the requirements of the user.

Keywords: absorption matrix, similarity matrix, matrix of superiority, quantitative estimation, functional completeness, fuzzy logic, risk, expert system, graphs, reference model

DOI:

10.7256/2454-0714.2017.4.24251

Article was received:

13-11-2017


Review date:

25-09-2017


Publish date:

11-01-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Dolzhenko A.I. Nechetkie modeli effektivnyi instrumentarii dlya analiza potrebitel'skogo kachestva informatsionnykh sistem: monografiya. Rostov n/D: RGEU RINKh, 2008. 220 s.
2.
Matsyashek L.A. Analiz trebovanii i proektirovanie sistem. Razrabotka informatsionnykh sistem s ispol'zovaniem UML. M.: Izd. dom Vil'yams, 2002. 432 s.
3.
Uoker R. Upravlenie proektami po sozdaniyu programmnogo obespecheniya. Unifitsirovannyi podkhod. M.: Lori, 2002. 424 s.
4.
Shafer D.F., Fatrel R.T., Shafer L.I. Upravlenie programmnymi proektami: dostizhenie optimal'nogo kachestva pri minimume zatrat. M.: Izd. dom Vil'yams, 2004. 1136 s.
5.
Dolzhenko A.I., Glushenko S.A. Analiz predposylok sozdaniya SPPR upravleniya riskami proektov informatsionnykh sistem // Informatsionnye sistemy, ekonomika, upravlenie trudom i proizvodstvom: Uchenye zapiski. Vypusk 14. RostovnaDonu: RGEU (RINKh), 2011. 165 c.
6.
Chastikov A.P., Ledneva I.Yu. Nechetkie ekspertnye sistemy // Nauka Kubani, 6, 2000. S. 58-63.
7.
Polkovnikova N.A., Kureichik V.M. Razrabotka modeli ekspertnoi sistemy na osnove nechetkoi logiki // Izvestiya YuFU. Tekhnicheskie nauki, 1 (150), 2014. S. 83-92.
8.
Borisov V.V., Kruglov A.S., Fedulov A.S. Nechetkie modeli i seti.-2-e izd., stereotip. M.: Goryachaya liniya-Telekom, 2012. 284 s.
9.
Dolzhenko A.I. Metodologiya analiza riskov pri proektirovanii informatsionnykh sistem s ispol'zovaniem nechetkikh setei // Vestnik Rostovskogo gosudarstvennogo ekonomicheskogo universiteta RINKh, T. 24, 2, 2007. S. 148155.
10.
Zade L.A. Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii. M.: Mir, 1976. 168 s.
11.
Khubaev G.N. Sravnenie slozhnykh programmnykh sistem po kriteriyu funktsional'noi polnoty // Programmnye produkty i sistemy (SOFTWARE&SYSTEMS), 2, 1998. S. 7-9.
12.
Programmnyi produkt FuzzyTECH // Inform Software. URL: http://www.fuzzytech.com/ (data obrashcheniya: 7.03.2017).
13.
Programmnyi produkt CubiCalc // Hyper Logic. URL: http://www.tora-centre.ru/library/fuzzy/fuzi_i.htm (data obrashcheniya: 20.02.2017).
14.
Programmnyi produkt Fuzzy Logic Toolbox // MatLab. URL: https://ch.mathworks.com/products/fuzzy-logic.html (data obrashcheniya: 3.03.2017).
15.
Programmnyi produkt FlexTool // CynapSys. URL: http://cynapsys.com/page.cfm7CON-TENTS=include/contents.htm&BODY==products/flextool/flextool.htm (data obrashcheniya: 17.02.2017).
16.
Programmnyi produkt Scilab // Scilab Enterprises. URL: http://www.scilab.org (data obrashcheniya: 25.02.2017).
17.
Programmnyi produkt Deductor // BaseGroup Labs. URL: https://basegroup.ru/deductor/description (data obrashcheniya: 15.02.2017).
18.
Programmnyi produkt FisPro // INRA Irstea. URL: https://www7.inra.fr/mia/M/fispro/fispro2013_en.html (data obrashcheniya: 1.03.2017)