Eng During last 365 days Approved articles: 2000,   Articles in work: 345 Declined articles: 795 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Algorithm for calculating the normalized time-frequency correlation function
Avramchuk Valeriy

PhD in Technical Science

Associate Professor, National Research Tomsk Polytechnic University

634028, Russia, Tomskaya oblast', g. Tomsk, ul. Lenina, 2, aud. 115a

avs@tpu.ru
Faerman Vladimir

Assistant, National Research Tomsk Polytechnic University

634028, Russia, Tomska oblast', g. Tomsk, ul. Lenina, 2, aud. 115a

vaf@tpu.ru

Abstract.

The problem of the normalization of frequency-time correlation functions is considered and solved. The aim of the work is to create a methodology for calculating the coefficients for normalizing the time-frequency correlation functions and integrating them into the known computational algorithm. At the same time, the tasks were to ensure the possibility of normalizing each frequency component of the time-frequency correlation function independently and maintaining high performance of the original algorithm. The latter imposed restrictions on the application of the filtering operation in the time domain and the use of additional discrete Fourier transforms in the algorithm. To minimize the computational costs in calculating and rationing the time-frequency correlation functions, a technique was developed for calculating the normalizing coefficients from the samples of the complex signal spectrum. The main result of the work is a new algorithm for calculating the normalized time-frequency correlation function, which differs by an insignificant increase in computational complexity in comparison with the original algorithm. At the same time, the coefficients obtained can be used both for simultaneous normalization of all the frequency components of the time-frequency correlation function, which is necessary to ensure the independence of the result from the scale of the input signals, and for independent normalization of each of its frequency components. The latter is useful in solving problems of detecting weak correlated components in signal mixtures.

Keywords: computational scheme, correlator, normalization, spectral analysis, digital signal processing, correlation functions, time-frequency analysis, fast Fourier transform, signal detection, correlogram

DOI:

10.7256/2454-0714.2017.4.24534

Article was received:

25-10-2017


Review date:

31-10-2017


Publish date:

11-01-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Sen M. Kuo, W.-S. S. Gan. Digital Signal Processors: Architectures, Implementations, and Applications. New Jersey: Pearson-education, 2005. 610 p.
2.
Pat. 2405163 Rossiiskaya Federatsiya, MPK G 01 R 23/16. Cposob chastotno-vremennogo korrelyatsionnogo analiza tsifrovykh signalov/ Avramchuk V.S., Chan V.T., Goncharov V.I..; zayavitel' i patentoobladatel' Tomskii politekhnicheskii universitet.- 2009118627/28; zayavl. 18.05.09; opubl. 27.11.10, Byul. 33. 10 s.
3.
Gao Y., Brennan M.J., Joseph P.F. A Comparison of Time Delay Estimators for the Detection of Leak Noise Signals in Plastic Water Distribution Pipes // Journal of Sound and Vibration. 2006. Vol. 292. Iss. 3-5. pp. 552-570.
4.
Aificher E.C., Dzhervis B.U. Tsifrovaya obrabotka signalov: prakticheskii podkhod, 2-e izdanie: Per. s angl. M.: Izdatel'skii dom Vil'yams, 2004. 992 s.
5.
Chan V.T. Chastotno-vremennoi korrelyatsionnyi analiz v zadachakh opredeleniya koordinat utechek v truboprovodakh / V.T. Chan, V.S. Avramchuk, V.I. Goncharov // Izvestiya Tomskogo politekhnicheskogo universiteta. 2010.- 2. T. 317. S. 70-73.
6.
Kaz'min V.P., Avramchuk V.S. Analiz signalov vibratsii dvigatelya vnutrennego sgoraniya // Izvestiya Tomskogo politekhnicheskogo universiteta. 2013.- 5. T. 323. S. 69-73.
7.
Dubov M.A., Stoyanov D.D. Sravnitel'nyi analiz algoritmov obnaruzheniya radiosignalov s tsifrovymi vidami modulyatsii v kognitivnykh radiosistemakh // REDS: Telekommunikatsionnye ustroistva i sistemy. 2014.- 3. T. 4. S. 213-217.
8.
Laions R. Tsifrovaya obrabotka signalov: Vtoroe izdanie. Per. s angl. M.: OOO Binom-Press, 2006. 656 s.
9.
Barkov A.V. Metod obnaruzheniya slabogo garmonicheskogo signala v gaussovom shume // Vestnik Polotskogo gosudarstvennogo universiteta. Seriya S. 2012.-. 12. S. 6-12.
10.
Sergienko A.B. Tsifrovaya obrabotka signalov. Spb.: Piter, 2002. 608 s