Рус Eng During last 365 days Approved articles: 1930,   Articles in work: 305 Declined articles: 749 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Pythagoreanism and Platonism in mathematics: history and modernity
Iashin Boris Leonidovich

Doctor of Philosophy

professor of the Department of Philosophy at Moscow State Pedagogical University

117571, Russia, Moscow, str. Vernadsky prospekt 88, room No. 812

jabor123@rambler.ru
Другие публикации этого автора
 

 

Abstract.

The subject of this research is such philosophical and mathematical disciplines as Pythagoreanism and Platonism, which remain relevant at the present time. The author demonstrate the contribution of Pythagoreans to mathematics, their role in creation of geometric algebra, importance of the discovery of incommensurable segments that propelled the Pythagorean mathematics into crisis. The work examines the essence of the concept of mathematical Platonism, reveals its peculiarities, and demonstrates its dissimilarity from the concept of mathematical Pythagoreanism. The presently existing various forms of mathematical Platonism, as well as their peculiarities are explored. The article provides the main arguments of modern critics of Platonism in mathematics and their weaknesses. The author demonstrates the value of the concept of mathematical Platonism as a model visual thinking, and underlines that a large number of mathematicians remain its adherers. The scientific novelty is defined by the fact that the work actualized the ideas of Pythagoreanism and Platonism, as well as the consequence of a dispute that originated in ancient times and continues today between the supporters of Platonism and their opponents related to the fundamental grounds of mathematics. The author concludes that the results of modern mathematical science give valid arguments that confirm the performance and high efficiency of the concept of Platonism in comparison with other philosophical concepts of mathematics.

Keywords: epistemological Platonism, ontological Platonism, mathematical reality, moderate Platonism, incommensurable segments, abstract mathematical objects, mathematical Platonism, Pythagoreanism, methodological Platonism, full-blooded Platonism

DOI:

10.25136/2409-8728.2018.5.24677

Article was received:

09-11-2017


Review date:

10-11-2017


Publish date:

19-05-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Chanyshev A. N. Kurs lektsii po drevnei filosofii.-M.: Vysshaya shko-la.-1981. – 374 s.
2.
Marks. K., Engel's F. Soch.-2-e izd.-t. 1.-M.: Izd-vo politicheskoi literatury. – 1955. – 698 s.
3.
Sm. ob etom, naprimer: Kamel'chuk E.N. Pervyi krizis osnovanii ma-tematiki i pifagoreiskaya filosofiya / [Tekst] E.N. Kamel'chuk // Fi-losofiya nauki. Novosibirsk. Izdatel'stvo Sibirskogo otdeleniya RAN.-2002.-№ (1)12. – C. 3 – 26.
4.
Istoriya matematiki (V 3-kh tomakh).-Pod red. A.P. Yushkevicha. – T. 1.-M.: Nauka. – 1970. – 496 s.
5.
Karmin A. S. Poznanie beskonechnogo.-M.: Mysl'.-1981. – 229 s.
6.
Penrouz R. Put' k real'nosti ili zakony, upravlyayushchie Vselennoi. Polnyi putevoditel'. – M. – Izhevsk: Institut komp'yuternykh issle-dova-nii, NITs «Regulyarnaya i khaoticheskaya dinamika», 2007. – 912 s.
7.
Tegemark M. Nasha matematicheskaya vselennaya. V poiskakh fundamen-tal'noi prirody real'nosti. – M.: «CORPUS». – 2016. – 592 s.
8.
Zamkov A. V. Tsifrovaya real'nost' kak matematicheskaya metofora // Vestnik Volzhskogo universiteta imeni V.N. Tatishcheva.-Tol'yatti: VUiT.-№4. – T. 2. – 2016. [Elektronnyi resurs] URL: https://elibrary.ru/download/elibrary_27520042_96170937.pdf (Data obra-shcheniya 13.10.2017).
9.
Mikhailova N. V. Filosofiya i matematika v uchenii Platona: razvitie idei i sovremennost'/ [Tekst] N. V.Mikhailova// Rossiiskii gumani-tarnyi zhurnal. T. 3.-№. 6.-2014. [Elektronnyi resurs] URL: https://cyberleninka.ru/article/n/filosofiya-i-matematika-v-uchenii-platona-razvitie-idei-i-sovremennost-1 (Data obrashcheniya 15.09.2017)
10.
Tri shkoly: formalizm, platonizm, konstruktivizm-[Elektronnyi resurs] URL: yos.ru/exact-sciences/28-2010-06-28-09-34-02.html (Data obrashcheniya 14.08.2017)
11.
Mario Livio. Byl li Bog matematikom? Galopom po bozhestvennoi Vselennoi s kal'kulyatorom, shtangentsirkulem i tablitsami Bradisa. – M.: AST. – 2016. – 383 s. [Elektronnyi resurs] URL: https://books.google.ru/books?isbn=5040117744 (Data obrashcheniya 21.10.2017)
12.
Ch. Hermite (1894) in Corréspondance d’Hermite et Stieltjes, Paris, Gauthier-Villars, 1905, t. II, p. 398. [Elektronnyi resurs] URL: https://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath;cc=umhistmath;rgn=main;view=text;idno=AAN9223.0002.001 (Data obrashcheniya 21.08.2017)
13.
G.H. Hardy, A Mathematician’s Apology, Cambridge, Cambridge Univ. Press, 1941, pp. 63–64.
14.
Bernais P. O platonizme v matematike /[Tekst] P. Bernais // Platon-matematik.-M.: Golos.-2011.-S. 259-275.
15.
Tselishchev V.V. Vse est' chislo? / [Tekst] V.V. Tselishchev // Vokrug sveta.-№ 9. – 2008. [Elektronnyi resurs] URL: http://www.vokrugsveta.ru/vs/article/6304/ (Data obrashcheniya 15.07.2017)
16.
Davis Ph., Hersh R. The Mathematical Experience. — Mariner Books. – 1999. – 464 r.
17.
Tselishchev V.V. Formal'naya ontologiya i neyavnaya semantika matematiche-skoi praktiki/ [Tekst] Tselishchev V. V. // Vestnik NGU. Seriya «Filo-sofiya».-T. 11.-Vyp. 2.-2013.-S. 10.
18.
Semenov Yu. I. K razvitiyu gipotezy funktsional'nykh semanticheskikh konstruktsii [Elektronnyi resurs] URL: http://credonew.ru/content/view/293/54/ (Data obrashcheniya 11.10.2017)
19.
Quine W. Two Dogmas of Empiricism (1951) In: Quine, Willard Van Or-man. From a Logical Point of View: 9 Logico-Philosophical Essays. Cam-bridge, Harvard University Press, 1953.
20.
Lolli,Gabriele. Filosofiya matematiki: nasledie dvadtsatogo stoletiya / Per. s ital. A.L. Sochkova, S.M. Antakova, pod red. prof. Ya.D. Sergeeva. – N. Novgorod: Izd-vo Nizhegorodskogo gosuniversiteta im. N.I. Lobachevskogo.-2012. – 299 s.
21.
Gödel K. Russell’s Mathematical Logic, in The Philosophy of Bertrand Rus-sell, pod red. P.A. Schilpp, Evanston, Ill., The Library of Living Philoso-phers (New York, The Tudor Publishing Company), 1944, pp. 125–163.
22.
Cole Julian C. Mathematical Platonism//Internet Encyclopedia of Philoso-phy [Elektronnyi resurs] URL: http://www.iep.utm.edu/ (Data obrashche-niya 15.08.2017)
23.
Tselishchev V. V. Matematicheskii platonizm/ [Tekst] V. V. Tselishchev // ΣΧΟΛΗ (Schole) Filosofskoe antikovedenie i klassicheskaya tradi-tsiya.-2014. – T. 8.-Vypusk 2. – Ss. 492-504. [Elektronnyi resurs] URL: https://cyberleninka.ru/article/n/matematicheskiy-platonizm (Data obrashcheniya 11.07.2017)
24.
Kanke V. A. Filosofiya matematiki, fiziki, khimii, biologii.-M.: KNORUS. – 2011. – 368 s.
25.
Shaposhnikov V. A. Filosofiya matematiki/ [Tekst] V. A. Shaposhnikov // Filosofiya nauki : uchebnik dlya magistratury / A. I. Lipkin [i dr.] ; pod red. A. I. Lipkina. — 2-e izd., pererab. i dop. — M. : Izdatel'stvo Yurait, 2016.-512 s. [Elektronnyi resurs] URL: https://m.studme.org/41742/filosofiya/pifagoreizm_matematicheskiy_platonizm (Data obrashcheniya 13.09.2017)
26.
Vechtomov E. M. Metafizika matematiki. – Kirov: Izd-vo VyatGTU.-2006. Ss. 209. – 508 s.
27.
Perminov V. Ya. Real'nost' matematiki/ [Tekst] V. Ya. Perminov// Vo-prosy filosofii.-№2. – 2012. – Ss. 24-39.
28.
Tselishchev V.V. Filosofiya matematiki. Chast' 1. Novosibirsk, 2002. – 212 s.
29.
Rozov N.S. Sotsiologicheskii relyatsionizm S.Fuksa i ob''yasnenie «ra-bochego platonizma» v matematike// Filosofiya nauki.-№3. – 2006. Ss. 39-48.
30.
Bublak, Robert. Mathematische Gegenstaende und mathematisches Wissen: Ueber die ontologischen und epistemologischen Probleme des mathematis-chen Platonismus. LMU Muenchen, 1997.
31.
Parshin A.N. Razmyshleniya nad teoremoi Gedelya. // Istoriko-matematicheskie issledovaniya. – Vtoraya seriya. – Vyp. 5 (40).-M.: Yanus – K. – 2000. – Ss. 26 – 54. [Elektronnyi resurs] URL: http://pyrkov-professor.ru/default.aspx?tabid=195&ArticleId=80 (Data obrashcheniya 13.10.2017).
32.
Khrennikov A. Yu. Modelirovanie protsessov myshleniya v r-adicheskikh sistemakh koordinat.-M.: FIZMATLIT. – 2004. – 296 s.