Eng During last 365 days Approved articles: 1982,   Articles in work: 307 Declined articles: 755 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

On logical pluralism and alternative pragmatic theories
Zholkov Sergey

PhD in Physics and Mathematics

Professor, the Department of Applied Mathematics, Gubkin Russian State University of Oil and Gas (National Research University)

119991, Russia, Moscow, Leninsky Prospekt 65

sergei_jolkov@mail.ru

 

 

Abstract.

This article analyzes the forms of logical analysis in the pragmatic theory and the requirements necessary for structuring the authoritative pragmatic theory. The author compares the various logical schemes and their use pragmatic theories. The article examines the origins and peculiarities of institutional mathematical logics and discusses the specificities of logical calculus structured by L. I. Rosonoer (1983); PCont equivoluminar paraconsistent calculus PI s built by A. Arruda; and LPCont and LP1Cont in which the classical logic plays a role of formal metalanguage for the paraconsistent calculus PCont. The author analyses the three distinctions of para-tautology from institutional tautology; discusses refusal from the principle ECQ (ex contradictione quodlibet) and execution of the “principle of unprovability from the extraneous thoughts” in the (non-trivializing) paraconsistent logic; as well as applicability of logical pluralism for various pragmatic theories. The article carries out a comparative analysis of the various logical systems and their potential application in pragmatic theories, in creating an artificial intelligence and regulation of discussions. The author analyzes the theoretical-plural motivation of para-compatibility suggested by K. Mortensen. In accordance with Mortensen’s position, is proposed an approach for verification of fundamental ideas and conceptual logical schemes, which is called the principle of mathematical tolerance. The work also analyzes the cases of use of the paraconsistent logic in pragmatic theories and crucial causes for the inconsistent pragmatic positions and the alternative theories of real pragmatics.

Keywords: consistency, non-predicative descriptor, paraconsitent logics, trivialisable logical system, 3-tautology, intuitionist predicate calculus, pragmatic theory, pragmatic analysis, alternative pragmatic theories, unsolvable problems

DOI:

10.25136/2409-8728.2018.10.25932

Article was received:

10-04-2018


Review date:

10-04-2018


Publish date:

21-10-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Stepin V.S. Teoreticheskoe znanie. M :Progress-Traditsiya. 2000. 713 s.
2.
Budanov V.G. Mezhdistsiplinarnost' i transdistsiplinarnost' nachala XXI veka. Filosofiya, metodologiya i istoriya nauki. 2015. T.1. N1. S.100112.
3.
I. Kant. Kritika chistogo razuma. :Mysl'. M. 1994. 591 s.
4.
Zholkov S.Yu. Real'nost' i pragmaticheskie teorii. Kak prinimat' resheniya. M.: Kanon+. 2015. 488 s.
5.
Zholkov S.Yu. Arkhitektonika pragmaticheskikh teorii. I; II. //Informatsionnye protsessy. Tom 13. N4. 2013. S.265289; T.14. N1. 2014. S.955.
6.
Kolmogorov A.N., Dragalin A.G. Matematicheskaya logika. Uchebnik. M.: Editorial URSS. 2004. 240 s.
7.
Vereshchagin N.K., Shen' A. Yazyki i ischisleniya. M.: MTsNMO. 2008. 288 s.
8.
Dragalin A.G. Konstruktivnaya teoriya dokazatel'stv i nestandartnyi analiz. M.: URSS. 2003. 543.s.
9.
Vasyukov V.L. Gorizonty nauchnogo plyuralizma. Filosofiya, metodologiya i istoriya nauki 2015. T.1. N1. S. 6885.
10.
Klain M. Matematika. Utrata opredelennosti. :MIR. M. 1984. 447 s.
11.
Geiting A. Intuitsionizm. :MIR. M. 1965. 201 s.
12.
Kleene S.S., Vesley R.E. The foundations of Intuitionistic Mathematics. :North-Holland Publ. Comp. Amsterdam, 1965. 206 p.
13.
Markov A.A. O konstruktivnoi matematike // Trudy matematicheskogo instituta AN SSSR. 1962. T.67. S.814.
14.
Markov A.A. Essai de construction d'une logique de la mathematique constructive // Revue Internationale de Philosophic 1971. T.25. 98. P.477507.
15.
Shanin N.A. Konstruktivnye veshchestvennye chisla i konstruktivnye funktsional'nye prostranstva // Trudy matematicheskogo instituta AN SSSR, 1962. T.67. S.15295.
16.
Mortensen C. Inconsistent Mathematics. :Kluwer Academic Publishers. Amsterdam, The Netherlands (Springer Sci-ence+Business Media Dordrecht). 1995. 158 s.
17.
Rozonoer L.I. O vyyavlenii protivorechii v formal'nykh teoriyakh. I, II. //Avtomatika i telemekhanika. N6. S.113124; N7. S. 97104. 1983.
18.
Kripke S.A. Semantical analysis of intuitionistic logic I // Formal systems and recursive functions. Amsterdam. 1965. P.92129.
19.
Costa N.C.A., da. Calculus de predicats pour les systemes formales inconsistants. // C.R. Acad. Sc. Paris. 1964, 258A. P.2729.
20.
Costa N.C.A., da. On the theory of inconsistent formal systems. // Notre Dame Journal of Form. Log. Oct. 1974. V.XV. N4. P.497510.
21.
Arruda A.I. A survey of paraconsistent logic. // Mathematical logic in Latin America. AmsterdamNew York: North-Holland Pub. Co. 1980. P.141.
22.
Tvoreniya Tertulliana. Ch.I. SPb. 1847.
23.
Vasil'ev N.A. O chastnykh suzhdeniyakh, o treugol'nike protivopolozhnostei, o zakone isklyuchennogo chetverto-go. //Uchenye zapiski Kazanskogo universiteta. God 77, desyataya kniga. Oktyabr', 1910. S.147.
24.
Vasil'ev N.A. Voobrazhaemaya (nearistoteleva) logika. //Zhurnal Ministerstva narodnogo prosveshcheniya. No-vaya seriya. T.40 (Avgust). 1912. S.207246.
25.
Anderson A.R., Belnap N.D., Dunn J.M. Entailment. The logic of relevance and necessity. V.2. Princeton. 1995.
26.
Koen P.Dzh. Teoriya mnozhestv i kontinuum-gipoteza . :MIR. M. 1969. 347 s.
27.
Vasyukov V.L. Kvantovaya logika. :Per Se. M. 2005. 192 c.
28.
Vasyukov V.L. Logicheskii plyuralizm i neklassicheskaya teoriya kategorii. /Logicheskie issledovaniya, vyp.18. :Tsentr gumanitarnykh initsiativ. M.SPb. 2012. S.6076.
29.
Gödel K. The Consistency of the Axiom of Choice and of the Generalized Continuum-hypothesis with the Axioms of Set Theory. Princeton Univ. Press. 1940. 66 p.
30.
Zholkov S.Yu. O ponyatii informatsii v filosofii i teorii informatsii. //Filosofiya i kul'tura. N.10. 2017. S.5566.
31.
Zholkov S.Yu. Matematika i informatika dlya gumanitariev. Uchebnik. :INFRA-M. M. 2004. 527 s.