Eng During last 365 days Approved articles: 1928,   Articles in work: 307 Declined articles: 744 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

The Method of Optical Processing of Spatial Information for the Purpose of Guidance and Landing Space Probes on Solar System Small Bodies
Lobanov Aleksandr Anatolevich

PhD in Technical Science

Associate Professor, Department of Instrumental and Applied Software, MIREA Russian Technological University

119454, Russia, g. Moscow, pr. Vernadskogo, 78, kab. G-225

aa.lobanoff@ya.ru

 

 
Filonov Aleksandr Sergeevich

PhD in Technical Science

associate professor of the Department of Applied Optics at Moscow State University of Geodesy and Cartography

105064, Russia, g. Moscow, per. Gorokhovskii, 4, kab. 1A

kafedra-po@yandex.ru

Abstract.

In this article the authors focus on the issues that relate to using the promising technique of optical correlation for onboard guidance and landing a space probe on a surface of a solar system small body. The authors use the ability of optical systems to perform the Fourier transformation which allows to construct optical-electronic devices of high-speed and high-efficiency computing systems. Distribution of illumination (energy) inplane or through the lens of the entrance pupil is an input data flow for an optical computing system that has been constructed on the basis of the aforesaid principle. In a general way, this information will function as a reference standard tranmission according to two (x, y) coordinates. To analyze the aforesaid aspects, the authors of the article have used mathematical analysis methods, in particular, integral calculus for creating a mathematical model of an optical correlation bearing finder with a revolving the reference standard. The authors suggest to modulate an optical signal going through a transparent reference standard both upon the amplitude and phase. The advantage of the method is a superspeed of information processing that is restricted by the light velocity and happens almost at instance taking into account small sizes of devices. The authors give a theoretical justification of the efficiency of the optical polar correlation method. The authors demonstrate that in order to neutralize the reference standard when guiding and landing a space probe it is better to use a revolving of a reference image. The authors also analyze the method of revolving of a reference image to find the function extremum of the correlation signal and neutralizing the reference standard.

Keywords: neutralizing the reference standard, optical computer, computer vision, computational complexes, pattern recognition, small bodies, landing a space probe, guidance a space probe, spatial information, optical processing

DOI:

10.25136/2306-4196.2018.2.25971

Article was received:

10-04-2018


Review date:

14-04-2018


Publish date:

23-04-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
William Napier. Hazards from comets and asteroids, Oxford University Press, 2008. 289 p.
2.
Medvedev Yu.D., Asteroidno-kommetnaya opasnost' / Yu.D. Medvedev, M.L. Sveshnikov, A.G. Sokol'skii i dr.-SPb.: Izd-vo ITA-MIPAO, 1996 244s.
3.
Burkov V.D., Esakov V.A., Kufal' G.E. i dr. Problema protivodeistviya asteroidnoi opasnosti kosmicheskimi sredstvami. //Lesnoi vestnik. 2011 5 S.157 169
4.
Eismont N. A., Boyarskii M. N., Ledkov A. A., Nazirov R. R., Dankhem D., Shustov B. M.. O vozmozhnosti navedeniya malykh asteroidov na opasnye nebesnye ob''ekty s ispol'zovanie gravitatsionnogo manevra // Astronomicheskii vestnik, 2013, tom 47, 4, S. 19.
5.
Gehrels T (Ed), Hazards due to Comets and Asteroids, University of Arizona Press, 1994, ISBN 0-8165-1505-0 This covers all aspects of NEOs, comprehensively.
6.
Coppinger R. NASA plans 'Armageddon' spacecraft to blast asteroid [Elektronnyi resurs] / Rob Coppinger // FlightGlobal. 2007. Rezhim dostupa: https://www.flightglobal.com/news/articles/nasa-plans-armageddon-spacecraft-to-blast-asteroid-215924/ (data obrashcheniya 20.03.2018).
7.
Karpenko S.A., Malye tela Solnechnoi sistemy posadka zonda NEAR na poverkhnost' 433 Erosa [Elektronnyi resurs] // Novosti kosmonavtiki 2004. URL: http://galspace.spb.ru/index346.html (Data obrashcheniya: 20.03.2018).
8.
Takahiro Hiroi et al. Developing space weathering on the asteroid 25143 Itokawa // Nature. 2006. V. 443. P. 56-58.
9.
ESA confirms the primary landing site for Rosetta. [Elektronnyi resurs] // ESA. 2015. URL:http://www.esa.int/Our_Activities/Space_Science/Rosetta/ESA_confirms_the_primary_landing_site_for_Rosetta. (data obrashcheniya: 20.03.2018).
10.
NASA Rosetta Instrument Reignites Debate on Earth's Oceans . [Elektronnyi resurs] // ESA. 2015. URL:http://www.jpl.nasa.gov/news/news.php?release=2014-423. (data obrashcheniya: 20.03.2018).
11.
Dubov S.S., Zel'kov K.V., Konopikhin A.A., Krasnopevtseva B.V., Lobanov A.A., Rozhnev I.Yu., Shingareva K.B. Vybor poverkhnosti otnosimosti i sistemy koordinat dlya kartografo-geodezicheskogo obespecheniya posadki na Fobos KA FOBOS-GRUNT // Prilozhenie k zhurnalu Izvestiya vuzov. Geodeziya i aerofotos''emka. Sbornik statei po itogam nauchno-tekhnicheskoi konferentsii. 2009. 2-2. S. 98-101.
12.
Belinskaya, E.V. Istoriya i perspektivy ispol'zovaniya sistem tekhnicheskogo zreniya dlya upravleniya protsessom posadki na planety i malye tela solnechnoi sistemy / E.V. Belinskaya // Mekhanika, upravlenie i informatika (sm. v knigakh). 2009. 1. S. 268278.
13.
Bogolyubov, I.A. Primenenie opticheskogo pelengatora dlya tselei posadki kosmicheskogo letatel'nogo apparata na malye tela solnechnoi sistemy / I.A. Bogolyubov, A.A. Lobanov, A.S. Filonov // Nauchnyi al'manakh. 2017. 5-3(31). S. 45-48.
14.
Shcherbinin V.V. Postroenie invariantnykh korrelyatsionno-ekstremal'nykh sistem navigatsii i navedeniya letatel'nykh apparatov / V. V. Shcherbinin. M. : Izd-voMGTUim. N. E. Baumana, 2011. 230 s.
15.
Yakushenkov Yu.G. Proektirovanie optiko-elektronnykh priborov. 2-e izd. M.: Logos, 2000. 489 s.
16.
Syryamkin V.I., Shidlovskii V.S. Korrelyatsionno-ekstremal'nye radionavigatsionnye sistemy. Tomsk: Izd-vo Tom. un-ta, 2010. 316 s.
17.
Blagorodov A.M., Vanetsian R.A. i dr. Opticheskii korrelyatora. Zayavka na izobretenie 1567398/18-10.