Eng During last 365 days Approved articles: 1916,   Articles in work: 289 Declined articles: 811 
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Developing Software Tools to Accompany a Numerical Modeling of Internal Waves in Stratified Fluid
Tyugin Dmitry

PhD in Physics and Mathematics

Researcher at Laboratory for Modelling Natural and Technogenic Catastrophes at the Alekseeva Nizhny Novgorod State Technical University 

603155, Russia, Nizhegorodskaya oblast', g. Nizhnii Novgorod, ul. Minina, 24, aud. 1117



The object of the research is the geophysical processes in the ocean, in particular, distribution and transformation of internal waves in stratified fluid. According to the author, it is possible to study such large-scale processes using the methods of numerical modeling and open hydrological data sources. Nevertheless, numerical experiments require accompanying software tools. These tools include means of incoming data processing, software presentation methods in a form of networks, data sample preparation methods, data visualization means, and methods of initialization of mathematical models. The author examines all stages of a numerical experiment and required software tools as well as aspects of initialization of numerical models. The author demonstrates that part of the initial conditions can be created from the data context in an automatic mode. The novelty of the research is caused by the fact that the author offers methods to be used to create problem-oriented software tools to carry out a numerical experiment on modelling geophysical processes that depend on spatiotemporal distribution of multivariable data. The methods offered can be used in many spheres of mathematical modelling of physical processes such dependencies are attributable to. 

Keywords: algorithms, data processing, data visualization, stratified fluid, internal waves, numerical modeling, software package, model initialization, numerical experiment, NetCDF



Article was received:


Review date:


Publish date:


This article written in Russian. You can find full text of article in Russian here .

Blumberg A., Mellor G. A discription of a three-dimensional coastal ocean circulation model // Dynalysis of Princeton. 1987. P. 1-16.
Marshall J., Hill C., Perelman L., Adcroft A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling // J. Geophysical Res. 1997. V. 102. P. 5733-5752.
Melsom A., Lien V., Budgell W. Using the Regional Ocean Modeling System (ROMS) to improve the ocean circulation from a GCM 20th century simulation // Ocean Dynamics. 2009. P. 969-981.
Lamb K. G. Numerical experiments of internal wave generation by strong tidal flow across a finite-amplitude bank edge // J. Geophys. Res. Oceans. 1994. V. 99. P. 843-864.
Boyer T.P., Antonov J.I., Garcia H.E., Johnson D.R., Locarnini R.A., Mishonov A.V., Pitcher M.T., Baranova O.K., Smolyar I.V. World Ocean Database 2005. Washington: U.S. Government Printing Office. 2006. 190. P.
Teague W.J., Carron M.J., Hogan P.J. A Comparison between the Generalized Digital Environmental Model and Levitus Climatologies // J. Geophys. Res. 1990. V. 95. P. 7167 7183.
Meier H.E.M., Doscher R., Coward A.C., Nycander J., Doos K. RCO-Rossby Centre regional Ocean climate midel: Model description (version 1.0) and first results from the hindcast period 1992/93. Norrkoping: Swed. Meteorol. Hydrol. Inst. 1999. 102 P.
NetCDF. URL: http://www.unidata.ucar.edu/software/netcdf
Grimshaw R., Talipova T., Pelinovsky E., Kurkina O. Internal solitary waves: propagation, deformation and disintegration // Nonlin. Processes Geophys. V. 17. P. 633-649. doi:10.5194/npg-17-633-2010
Fofonoff N., Millard R. Jr. Algorithms for computation of fundamental properties of seawater // UNESCO Technical Paper in Marine Ssience 44. 1983. P. 1525.
Amante C., Eakins B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis // NOAA Technical Memorandum NESDIS NGDC-24. 2009. 19. P.
Snyder J. Flattening the Earth: Two Thousand Years of Map Projections. London: The University of Chicago Press. 1993. 384. P