Eng During last 365 days Approved articles: 1904,   Articles in work: 305 Declined articles: 803 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Low-vacuum heat insulating panels based on the byproducts of crystalized silicon
Zhzhonykh Alexey Maksimovich

Post-graduate student, the department of Construction Supplies and Construction Technologies, Siberian Federal University

660119, Russia, Krasnoyarsk krai, g. Krasnoyarsk, ul. 60 Let Sssr, 18, kv. 18

aspirantura.sfu@mail.ru

Abstract.

The heat insulating materials that reduce the thermal losses of buildings and constructs will play the key role in their energy performance. The low-vacuum insulation panels are an effective alternative to the non-vacuumed heat insulating materials due to the lower coefficient of thermal conductivity. The goal of this research is to examine the potential application of silica fume, aluminum byproduct as a filler for vacuum insulation panel. The author examines the properties of silicon dioxide powder, develops the composition and technology of production of the vacuum heat insulating panels on its basis. The article explores the silica fume – byproduct of crystalized silicon of Bratsk Ferroalloy Plant, which annual putput is 30,000 tons. The acquired results allow assuming that for manufacturing of the low-vacuum insulating panels can be used not only factory produced powder, but also less expansive powders of silica fume – the byproduct of crystalized silicon. In future, the use of byproducts can become the foundation of production of the high-quality vacuum insulation wilt low cost.

Keywords: micro photos, thermal conductivity, aluminum manufacturing wastes, LVIP, differential thermal analysis, X-ray phase analysis, vacuum insulating panels, micro silica, nano-size, energy efficiency

DOI:

10.7256/2310-8673.2018.3.26161

Article was received:

03-05-2018


Review date:

03-05-2018


Publish date:

03-05-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Frolov D. I., Sotnikova K. N., Kartashov A. V., Frolova V. S. Vnedrenie meropriyatii po snizheniyu energozatrat zdaniya // Nauchnyi zhurnal. Inzhenernye sistemy i sooruzheniya. 2012. 2. S. 34-37.
2.
Vasil'ev L. L. Teploprovodnost' nemetallicheskikh zernistykh sistem // Stroitel'naya teplofizika. M.: Energiya, 1966. S. 4856.
3.
Danilevskii L. N. Vakuumnaya teploizolyatsiya i perspektivy ispol'zovaniya v stroitel'stve [elektronnyi resurs] // Arkhitektura i stroitel'stvo. 2006. 5. C. 114 117.
4.
Nazirov R. A., Novikov N. S., Zhzhonykh A. M. Issledovanie vliyaniya nizkogo vakuuma na teploprovodnost' razlichnykh stroitel'nykh materialov // Science Time. 2016. 1 (25). C. 349-356.
5.
Dul'nev G. N., Zarichnyak Yu. P. Teploprovodnost' smesei i kompozitsionnykh materialov. Spravochnaya kniga. M.: Energiya, 1974. 264 s.
6.
Dul'nev G. N., Novikov V. V. Protsessy perenosa v neodnorodnykh sredakh. L.: Energoatomizdat, 1991. 248 s.
7.
Diefernbach N. Modernisierung von Zweifamilienhäusern auf unterschiedliche energetische Standards unter einzatz von Großelementen mit Vakuumdämmung // 10 Internationale Passivhaustagung 2006. Hannover, 2006. Pp. 6368.
8.
Cherkashin A., Pilipenko V., Danilevskii L. Poroshkovaya vakuumnaya teploizolyatsiya [elektronnyi resurs] // Arkhitektura i stroitel'stvo. 2011. 1. S. 219.
9.
Aliev F. E., Akhmedzhanova N. Kh., Krivorotov V. F., Kholmanov I. N. [i dr.] Teploprovodnost' opala, zapolnennogo ionnym provodnikom LiIO3 // Fizika tverdogo tela. 2003. T. 45. Vyp. 1. S. 6067.
10.
Gladkov S. O. Gazokineticheskaya model' teploprovodnosti geterogennykh veshchestv // Zhurnal tekhnicheskoi fiziki. 2008. T. 78. Vyp. 7. S. 1215.
11.
Averkova A. V. Poluchenie poristykh teploizolyatsionnykh materialov na osnove mikrokremnezema // Problemy geologii i osvoeniya nedr. Tomsk: Izd-vo TPU, 2009. S. 820-822.
12.
Gershanovich G. L. Dobavka mikrokremnezemistykh otkhodov ETTsKK Bratskogo alyuminievogo zavoda v stroitel'nye rastvory i drugie tsementnye kompozitsii // Otchet o nauchno-issledovatel'skoi rabote po teme 7. Inv. OISM UP-1068. Bratsk, 1990. 768 s.
13.
Patent Rossiiskoi Federatsii RU2283292 Sposob prigotovleniya mikrogranul kompleksnoi dobavki v tsementnye kompozity. Belykh Svetlana Andreevna (RU); Fadeeva Anastasiya Mikhailovna (RU); Myasnikova Anastasiya Yur'evna (RU); Popova Viktoriya Grigor'evna. 2005.04.12.
14.
Lokhova N. A. Obzhigovye materialy na osnove mikrokremnezema. Bratsk: Bratskii GTU, 2002. 163 s.
15.
Giesche H. Synthesis of monodispersed silica powders // Journal of the European Ceramic Society. 1994. Vol. 14. Issue 3. Pp.189204.
16.
Philipse A. P. Quantitative aspects of the growth of (charged) silica spheres // Colloid and Polymer Science. 1988. Vol. 266. Issue 12. Pp. 11741180.
17.
Bogush G. H., Zukoski IV C. F. Uniform silica particle precipitation: an aggregative growth model // Journal of Colloidand Interfase Science. 1991. Vol. 142. Issue 1. Pp. 1934.
18.
Iler R. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. Wiley-Interscience, 1979. 866 p.
19.
Giesche H. Synthesis of monodispersed silica powders // Journal of the European Ceramic Society. 1994. Vol. 14. Issue 3. Pp.189204.
20.
Selyaev V. P., Neverov V. A., Kupriyashkina L. I., Mashtaev O. G. Vakuumnye teploizolyatsionnye paneli na osnove modifitsirovannogo diatomita // Nauchno-tekhnicheskii i proizvodstvennyi zhurnal. 2014. S. 59-62.