Eng During last 365 days Approved articles: 1911,   Articles in work: 300 Declined articles: 808 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Construction of a model of a multifunctional airborne guidance and landing system for a spacecraft
Lobanov Aleksandr Anatolevich

PhD in Technical Science

Associate Professor, Department of Instrumental and Applied Software, MIREA Russian Technological University

119454, Russia, g. Moscow, pr. Vernadskogo, 78, kab. G-225

aa.lobanoff@ya.ru

 

 
Mordvinov Vladimir Aleksandrovich

PhD in Technical Science

Professor, Department of Instrumental and Applied Software, MIREA Russian Technological University

119454, Russia, g. Moscow, pr. Vernadskogo, 78, kab. G-224

mordvinov@mirea.ru
Murakov Maxim Valerevich

Laboratory Assistant, Chair of Information Technologies in Public Administration, MIREA Russian Technological University

119454, Russia, g. Moscow, pr. Vernadskogo, 78, kab. A-329

murakov@mirea.ru
Raev Vyacheslav Konstantinovich

Doctor of Technical Science

Professor, Department of Instrumental and Applied Software, MIREA Russian Technological University

119454,, Russia, g. Moscow, Prospekt Vernadskogo, 78, kab. G-223

vkr3708@gmail.com

Abstract.

The basic requirements for the on-board complex of the spacecraft for purposes of guidance and landing on small bodies of the solar system are formulated in the work. The main tasks of the landing and landing vehicles are braking and approaching the surface of the celestial body, landing, working on its surface, possibly taking off from the surface to deliver the returned vehicle to the ground. Providing high requirements to the accuracy and reliability of the on-board guidance and landing system, an actual solution is proposed. Using the traditional approach to the modeling of processes and systems, a functional model of the onboard guidance and landing system in IDEF0 notation was created. In the process of creating a functional model, the main processes performed by the complex during descent from orbit and landing are described. As a result of the work, a description of the procedures performed by the multifunctional on-board guidance and landing system of the spacecraft has been obtained. An applied functional model of the "to-be" level was constructed, based on the use of an integrated approach. The proposed integrated approach is focused on the sharing of data from all on-board devices, both basic and backup information. This approach allows to increase the accuracy and reliability of the landing procedure.

Keywords: landing a spacecraft, guidance of the spacecraft, navigation of the spacecraft, integrated approach, visual guidance, Onboard multifunctional environment, functional model, optical direction finder, optical processing, small bodies

DOI:

10.7256/2454-0714.2018.2.26217

Article was received:

24-05-2018


Review date:

25-05-2018


Publish date:

13-06-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
William Napier. Hazards from comets and asteroids, Oxford University Press, 2008. 289 p.
2.
Medvedev Yu.D., Sveshnikov M.L., Sokol'skii A.G. i dr. Asteroidno-kommetnaya opasnost'.-SPb.: Izd-vo ITA-MIPAO, 1996. 244s.
3.
Burkov V.D., Esakov V.A., Kufal' G.E. i dr. Problema protivodeistviya asteroidnoi opasnosti kosmicheskimi sredstvami. //Lesnoi vestnik. 2011. 5. S.157 169.
4.
Eismont N. A., Boyarskii M. N., Ledkov A. A., Nazirov R. R., Dankhem D., Shustov B. M.. O vozmozhnosti navedeniya malykh asteroidov na opasnye nebesnye ob''ekty s ispol'zovanie gravitatsionnogo manevra // Astronomicheskii vestnik, 2013, tom 47, 4, S. 19.
5.
Gehrels T (Ed), Hazards due to Comets and Asteroids, University of Arizona Press, 1994. 211 p.
6.
Coppinger R. NASA plans 'Armageddon' spacecraft to blast asteroid [Elektronnyi resurs] // FlightGlobal. 2007. Rezhim dostupa: https://www.flightglobal.com/news/articles/nasa-plans-armageddon-spacecraft-to-blast-asteroid-215924/ (data obrashcheniya 18.12.2017).
7.
Kuznetsov Yu. M., Kulagin V. P., Obolyaeva N. M., Kaperko A. F., Shustov B., Naroenkov S., Bober S. A. Metody i sredstva informatsionno-analiticheskoi otsenki asteroidno-kometnoi opasnosti // Vestnik FGUP NPO im. S.A. Lavochkina. 2015. 4 (30). S. 9-15.
8.
Bogolyubov I.A., Lobanov A.A., Filonov A.S. Primenenie opticheskogo pelengatora dlya tselei posadki kosmicheskogo letatel'nogo apparata na malye tela solnechnoi sistemy // Nauchnyi al'manakh. 2017. 5-3(31). S.45-48.
9.
J. Veverka, et al, The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros, Nature, 413: 390393pp, 2001.
10.
R.L. Nelson, et al, 433 Eros landing development of NEAR Shoemakers controlled descent sequence, in Proceedings of 15th Annual AIAA/USU Conference on Small Satellites, 2001, SSC 01-11.
11.
W.F. Robert, W. D. David, and V. M. James, NEAR Shoemaker at Eros: rendezvous, orbital operations, and a soft landing, in Proceedings of AAS Astrodynamics Specialists Conference, 2001, AAS Paper 01-370.
12.
Starek J.A., Açıkmeşe B., Nesnas I.A., Pavone M. Spacecraft Autonomy Challenges for Next-Generation Space Missions. In: Feron E. (eds) Advances in Control System Technology for Aerospace Applications. Lecture Notes in Control and Information Sciences, 2016 vol 460. Springer, Berlin, Heidelberg. DOI https://doi.org/10.1007/978-3-662-47694-9_1. Publisher Name Springer, Berlin, Heidelberg. Print ISBN 978-3-662-47693-2.
13.
P.G. Antreasian, et al, Preliminary considerations for NEARs low-altitude passes and landing operations at 433 Eros, in Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 1998, AIAA Paper 98-4397.
14.
Y. Hajime, et al, Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa, Science, 312: 1350-1353, 2006.
15.
T. Kubota, et al, An autonomous navigation and guidance system for MUSES-C asteroid landing, Acta Astronautica, 52(2-6): 125131, 2003.
16.
H. Yano, et al, Touch-down of the Hayabusa spacecraft at the Muses Sea on Itokawa, Science, 312: 13501353, 2006.
17.
S.B. Broschart, D.J. Scheeres, Control of hovering spacecraft near small bodies: application to asteroid 25143 Itokawa, Journal of Guidance, Control, and Dynamics, 28(2): 343354, 2005.
18.
P. Ferri, Mission operations for the new Rosetta, Acta Astronautica, 58(2): 105111, 2006.
19.
S. Ulameca, Rosetta landerPhilae: implications of an alternative mission, Acta Astronautica, 58(8): 435441, 2006.
20.
Dubov S.S., Zel'kov K.V., Konopikhin A.A., Krasnopevtseva B.V., Lobanov A.A., Rozhnev I.Yu., Shingareva K.B. Vybor poverkhnosti otnosimosti i sistemy koordinat dlya kartografo-geodezicheskogo obespecheniya posadki na Fobos KA FOBOS-GRUNT // Prilozhenie k zhurnalu Izvestiya vuzov. Geodeziya i aerofotos''emka. Sbornik statei po itogam nauchno-tekhnicheskoi konferentsii. 2009. 2-2. S. 98-101.
21.
Lobanov A.A., Filonov A.S. Metod opticheskoi obrabotki prostranstvennoi informatsii dlya tselei navedeniya i posadki kosmicheskikh letatel'nykh apparatov na malye tela solnechnoi sistemy. // Kibernetika i programmirovanie. 2018. 2. S.94-102
22.
R 50.1.028-2001. Metodologiya funktsional'nogo modelirovaniya. Informatsionnye tekhnologii podderzhki zhiznennogo tsikla produktsii. Vved. 2002-01-01. M.: Izd-vo standartov, 2000. 75 s.