Рус Eng During last 365 days Approved articles: 1924,   Articles in work: 305 Declined articles: 811 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Development of methods for system analysis for solving problems of managing technical complexes
Fedosovsky Michail Evgen'evich

PhD in Technical Science

Head of the Systems and Technologies of Technogenic Safety Department of the St. Petersburg National Research University of Information Technologies, Mechanics and Optics

197101, Russia, g. Saint Petersburg, ul. Kronverkskii Prospekt, 49

27122009-2@mail.ru
Другие публикации этого автора
 

 

Abstract.

The object of research in this article are methods used to solve problems of designing control systems for complex technological complexes. The development of the theoretical basis for the creation of such methods is based on system analysis and is an important scientific problem. One approach to solving this problem is to develop a universal formalism that will be used to describe a variety of technologies. The choice of the mathematical apparatus determines the very possibility of solving this problem. In addition, the choice of the mathematical apparatus depends on the toolkit with which the user will have to work. In this paper, it is proposed to create mathematical models, methods, and to establish connections using the mathematical theory of categories.The main conclusions of this work are the following:1. The tasks of mapping semantics and the logic of concepts can be solved using methods of mathematical category theory.2. A unified description of families of heterogeneous mathematical models that reflect a different level of abstraction (generalization) at the stage of infologic modeling makes it possible to create formulations for the general definition of models with a description of their structure.

Keywords: abstract levels, Relational algebra, functor, mathematical category theory, mathematical model, datalogical modeling, infological modeling, conceptual modeling, system analysis, display

DOI:

10.25136/2306-4196.2018.3.26613

Article was received:

15-06-2018


Review date:

16-06-2018


Publish date:

22-06-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Soulding K. E. General Systems Theory – the Skeleton of a Science // Management Science, 1956, Vol. 2, No. 3, pp.197-208.
2.
Kim, D.P. Algebraicheskie metody sinteza sistem avtomaticheskogo upravleniya [Elektronnyi resurs]: monografiya – Elektron. dan. –Moskva: Fizmatlit, 2014. – 164 s. – Rezhim dostupa: https://e.lanbook.com/book/59680.
3.
Proshin, I.A. Proektirovanie avtomatizirovannykh sistem [Elektronnyi resurs]: ucheb. posobie/I.A. Proshin, L.Yu. Akulova, V.N. Proshkin. – Elektron. dan. – Penza : PenzGTU, 2012. – 274 s. –Rezhim dostupa: https://e.lanbook.com/book/62649.
4.
Alekseev, G.V. Matematicheskie metody v inzhenerii [Elektronnyi resurs]: ucheb.-metod. Posobie – Elektron. dan. – Sankt-Peterburg: NIU ITMO, 2014. – 68 s. – Rezhim dostupa: https://e.lanbook.com/book/70896
5.
Korobeinikov A. G. Razrabotka i analiz matematicheskikh modelei s ispol'zovaniem MATLAB i MAPLE – SPb: Cankt-Peterburgskii natsional'nyi issledovatel'skii universitet informatsionnykh tekhnologii, mekhaniki i optiki. – 2010. – 144 str. https://elibrary.ru/download/elibrary_26121333_69483773.pdf
6.
Korobeinikov A. G. Proektirovanie i issledovanie matematicheskikh modelei v sredakh MATLAB i Maple. – SPb: SPbGU ITMO, 2012. – 160 s. https://elibrary.ru/download/elibrary_26120684_34232766.pdf
7.
Korobeinikov A. G., Grishentsev A. Yu. Razrabotka i issledovanie mnogomernykh matematicheskikh modelei s ispol'zovaniem sistem komp'yuternoi algebry. – SPb: NIU ITMO,2014. – 100 s. https://elibrary.ru/download/elibrary_26121279_54604165.pdf
8.
Novakova, N. E. Modeli i metody prinyatiya proektnykh reshenii v slozhnostrukturirovannykh predmetnykh oblastyakh / N. E. Novakova. – SPb.: Izd-vo SPbGETU «LETI», 2010. – 168 s.
9.
Sommervill I. Inzheneriya programmnogo obespecheniya – M.: Vil'yams, 2002. – 624 s.: il.
10.
Maklein S. Kategorii dlya rabotayushchego matematika/Perevod s angl. pod red. V.A. Artamonova. – M.: Fizmatlit, 2004. – 352 s.
11.
Zhurkov S.V., Pinus A.G. Ob avtomorfizmakh shkal potentsialov vychislimosti n – elementnykh algebr//Sibirskii matematicheskii zhurnal. 2003. T. 44. № 3. S. 606-621.
12.
Le D. T. M., Janicki R. A categorical approach to mereology and its application to modelling software components//Lecture Notes in Computer Science. 2008. V. 5084. P. 146–174.
13.
Dzhonston P.T. Teoriya toposov; Per. s angl./Pod red. Yu.I.Ma¬ni¬na.-M.:Nauka. Gl. red. fiz.-mat. lit., 1986.-440 s.
14.
Gur'yanov A.V., Korobeinikov A.G., Fedosovskii M.E., Shukalov A.V., Zharinov I.O. Avtomatizatsiya proektirovaniya slozhnykh tekhnicheskikh kompleksov na osnove teorii kategorii//Voprosy oboronnoi tekhniki. Seriya 16: Tekhnicheskie sredstva protivodeistviya terrorizmu-2017.-№ 3-4(105-106).-S. 9-16.
15.
Fedosovskii M.E. Razrabotka i razvitie metodologicheskikh polozhenii avtomatizirovannogo proektirovaniya na baze metodov matematicheskoi teorii kategorii//Kibernetika i programmirovanie. — 2017.-№ 3.-S.10-22. DOI: 10.25136/2306-4196.2017.3.23087. URL: http://e-notabene.ru/kp/article_23087.html
16.
Korobeinikov A. G., Fedosovskii M. E., Grishentsev A. Yu., Polyakov V. I. Metod infologicheskogo modelirovaniya v inzhenerii znanii dlya resheniya zadach avtomatizirovannogo proektirovaniya//Izv. vuzov. Priborostroenie. 2017. T. 60, № 10. S. 925 – 931