Eng During last 365 days Approved articles: 2075,   Articles in work: 306 Declined articles: 850 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

A method to identify expert users in social networks
Luneva Elena

PhD in Technical Science

Associate Professor, Department of Information Technology, National Research Tomsk Polytechnic University

634050, Russia, g. Tomsk, ul. Pr. Lenina, 30

lee@tpu.ru
Efremov Aleksandr

Senior Lecturer, Department of Automation and Robotics, National Research Tomsk Polytechnic University

634050, Russia, Tomskaya oblast', g. Tomsk, ul. Lenina, 30

alexyefremov@tpu.ru
Banokin Pavel

Assistant, Department of Information Technologies, National Research Tomsk Polytechnic University

634050, Russia, Tomskaya oblast', g. Tomsk, ul. Pr. Lenina, 30

banokin@tpu.ru

Abstract.

The subject of the research is methods and approaches for solving a class of key player search tasks (key player problem) applicable for identifying expert users in a certain subject area on social networks; a model for building social graphs from data selected from a social network; methods for constructing weighted oriented random graphs for model experiments and their comparative analysis; methods of cluster analysis of the ranking results of social network users; comparative analysis of various results of the identification of expert users in a given subject area. The research methods used in this work are based on system analysis methods, cluster analysis tools, graph theory, and social network analysis methods. To assess the performance of the proposed method, model experiments were carried out using a computer and experiments on real data. In the process of software implementation of the service, the methods of the theory of algorithms, the theory of data structures, and object-oriented programming were used to demonstrate the operability of the method. A method has been developed for identifying expert users on social networks in a given subject area, taking into account the quantitative data on the activity of these users. Unlike existing methods, users of a social graph can be ranked using two or more effective methods, which allows them to take advantage of these methods, and the method itself provides an opportunity to obtain additional information about users who are influenced by expert leaders, as well as potential hidden leaders public opinion.

Keywords: affinity propagation, Kendall-Wei ranking, Borgatti measure, opinion leader, social network, cluster analysis, directed graph, key players, social graph, user identification

DOI:

10.7256/2454-0714.2018.4.28301

Article was received:

10-12-2018


Review date:

08-12-2018


Publish date:

10-01-2019


This article written in Russian. You can find full text of article in Russian here .

References
1.
Borgatti S.P. Identifying sets of key players in a social network // Computational & Mathematical Organization Theory. 2006. Vol. 12, 1. S.21-34
2.
Shetty J., Adibi J. Discovering important nodes through graph entropy the case of enron email database // 3rd International Workshop on Link Discovery. 2015. S.74-81
3.
Efremov A. A. Ispol'zovanie protsedury ranzhirovaniya KendallaUeya dlya identifikatsii klyuchevykh igrokov sotsial'nogo grafa / A. A. Efremov [i dr.] // Doklady TUSUR. 2018. T. 21, 1. S. 8085. DOI: 10.21293/1818-0442-2018-21-1-80-85
4.
Krebs V.E. Uncloaking terrorist networks // Volume. 2002, Vol. 7, 4. S. 1-10
5.
Batagelj V., Mrvar A.: Pajek datasets. 2006, URL: http://vlado.fmf.uni-lj.si/pub/networks/data/ (data obrashcheniya: 16.10.2018)
6.
UCINET software datasets, webpage, URL: https://sites.google.com/site/ucinetsoftware/datasets/ (data obrashcheniya: 22.11.2018)
7.
Sravnenie sposobov identifikatsii pol'zovatelei sotsial'nykh setei, yavlyayushchikhsya ekspertami v zadannoi predmetnoi oblasti / E.E. Luneva, A.A. Efremov, E.A. Kochegurova, P.I. Banokin, V.S. Zamyatina // Sistemy upravleniya i informatsionnye tekhnologii. 2017. 4(70). S. 63 68
8.
Arulselvan A., Commander C., Elefteriadou L., Pardalos P., Detecting critical nodes in sparse graphs // ComputOper Res. 2009. . 36, S. 21932200
9.
Lalou M., Tahraoui M.A, Kheddouci H. The Critical Node Detection Problem in networks: A survey (Review) // Computer Science Review. 2018. . 28, S. 92117
10.
Ortiz-Arroyo D. Discovering Sets of Key Players in Social Networks // Computational Social Networks Analysis. 2010. S 27-47
11.
Borgatti S.P., Carley K.M., Krackhardt D. On the robustness of centrality measures under conditions of imperfect data // Social Networks. 2006. Vol. 28, 2. S.124-176
12.
Luneva E.E., Zamyatina V.S., Banokin P.I., Yefremov A.A. Estimation of social network user's influence in a given area of expertise // Journal of Physics: Conference Series. 2017. Vol. 803, 1. S.1-6
13.
Frey B.J., Dueck D. Clustering by passing messages between data points // Science. 2007. Vol. 315, 5814. S. 972-976
14.
Jain A.K., Murty M.N., Flynn P.J. Data clustering: A review // ACM Computing Surveys. 1999. Vol. 31, 3. S. 264-323
15.
Fujiwara Y., Irie G., Kitahara T. Fast Algorithm for Affinity Propagation // Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. 2011. Vol. 3. S. 2238-2243
16.
Orlov A.I. Teoriya prinyatiya reshenii. Uchebnoe posobie. M.: Izdatel'stvo "Mart", 2004. 656 s.
17.
Pol'zovanie internetom. 2018 URL: https://www.levada.ru/2018/01/18/polzovanie-internetom/ (data obrashcheniya: 16.10.2018).
18.
Barabashi A., Bonabo E. Bezmasshtabnye seti // V mire nauki. 2003. 8. S. 55-63.
19.
Erdős P., Rényi A. On random graphs I. // Publ. Math. Debrecen. 1959. Vol. 6. C. 290-297.
20.
Raigorodskii A. M. Modeli sluchainykh grafov i ikh primeneniya // Trudy MFTI. 2010. T. 2. 4. S. 130140.
21.
Barabási A.-L., Albert R. Emergence of scaling in random networks // Science, 286:509-512, October 15, 1999.
22.
Zadorozhnyi V.N. Sluchainye grafy s nelineinym pravilom predpochtitel'nogo svyazyvaniya // Problemy upravleniya. 2010. 6. S. 2-11.
23.
Yudin E.B. Generatsiya sluchainykh grafov predpochtitel'nogo svyazyvaniya // Omskii nauchnyi vestnik. 2010. 2 (90). S. 7-13.
24.
Keener J.P. The PerronFrobenius Theorem and the Ranking of Football Teams / J.P. Keener // SIAM Review. 1993. Vol. 35(1). C. 80 93.
25.
Burk Jr. J.L. Eigenspaces of Tournament Matrices: PhD Thesis / J.L. Burk Jr. Washington State University, 2012. 91 s.
26.
Polichak J. W. Memes as Pseudoscience // The Skeptic Encyclopedia of Pseudoscience. 2002. Vol. 1. C. 664-667
27.
Sedova N.A., Sedov V.A. Logiko-lingvisticheskaya model' opredeleniya urovnya kvalifikatsii eksperta // Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: estestvennye i tekhnicheskie nauki.-2014. 7 (8). S. 3-6.