Рус Eng During last 365 days Approved articles: 2046,   Articles in work: 318 Declined articles: 834 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Kulikovskikh Ilona Markovna

PhD in Technical Science



443086, Russia, Samarskaya oblast', g. Samara, shosse Moskovskoe, 34

kulikovskikh.i@gmail.com
Prokhorov Sergej Antonovich

Doctor of Technical Science



443086, Russia, Samarskaya oblast', g. Samara, shosse Moskovskoe, 34

sp.prokhorov@gmail.com

Abstract.


Keywords: Bloom's taxonomy, cognitive modelling, knowledge assessment, partial guessing, pure guessing, collaborative learning, adaptive testing, cognitive map, interval-valued fuzzy set, logistic model

DOI:

10.7256/2454-0714.2018.4.28504

Article was received:

27-12-2018


Review date:

28-12-2018


Publish date:

29-12-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Bessarabov N. A., Bondarenko A. V., Kondratenko T. N., Timofeev D. S. Algoritmicheskoe obespechenie adaptivnoi sistemy testirovaniya znanii // Programmnye produkty i sistemy. – 2016. – № 1(113). – S. 68-74.
2.
Kibzun A. I., Panarin S. I. Formirovanie integral'nogo reitinga s pomoshch'yu statisticheskoi obrabotki rezul'tatov testov // Avtomatika i telemekhanika. – 2012. – № 6. – S. 119-139.
3.
Kibzun A. I., Inozemtsev A. O. Otsenivanie urovnei slozhnosti testov na osnove metoda maksimal'nogo pravdopodobiya // Avtomatika i telemekhanika. – 2014. – № 4. – S. 20-37.
4.
Bloom B. S. (Ed.), Engelhart M. D., Furst E. J., Hill W. H., Krathwohl D. R. Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain. – New York: David McKay, 1956. – 207 p.
5.
Anderson L. W. (Ed.), Krathwohl D. R. (Ed.), Airasian P. W., Cruikshank K.A., Mayer R. E., Pintrich P. R., Raths J., Wittrock M. C. A taxonomy for learning, teaching, and assessing: A revision of Bloom's Taxonomy of Educational Objectives (Complete edition). – New York: Longman, 2001. – 336 p.
6.
Mayer R. E. A taxonomy for computer-based assessment of problem-solving // Computers in Human Behaviour. – 2002. – 18. – pp. 623-632.
7.
Deutsch T., Herrmann K., Frese T., Sandholzer H. Implementing computer-based assessment-A web-based mock examination changes attitudes // Computers & Education. – 2012. – 58. – pp. 1068–1075.
8.
Kubinger K. D., Holocher-Ertl S., Reif M., Hohensinn C., Frebort M. On minimizing guessing effects on multiple-choice items: Superiority of a two solutions and three distractors item format to a one solution and five distractors item format // International Journal of Selection and Assessment. – 2010. – 18(1). – pp. 111-115.
9.
Kuo C.-Y., Wu H.-K. Toward an integrated model for designing assessment systems: An analysis of the current status of computer-based assessment in science // Computers & Education. – 2013. – 68. – pp. 388-403.
10.
Lesage E., Valcke M., Sabbe E. Scoring methods for multiple choice assessment in higher education-Is it still a matter of number right scoring or negative marking? // Studies in Educational Evaluation. – 2013. – 39. – pp. 188-193.
11.
Terzis V., Economides A. A. The acceptance and use of computer based assessment // Computers & Education. – 2011. – 56. – pp. 1032-1044.
12.
Thelwall M. Computer-based assessment: a versatile educational tool // Computers & Education. – 2000. – 34. – pp. 37-49.
13.
Wang T.-H. Developing an assessment-centered e-learning system for improving student learning effectiveness // Computers & Education. – 2014. – 73. – pp. 189-203.
14.
Bereby-Meyer Y., Meyer J., Budescu D. V. Decision making under internal uncertainty: the case of multiple-choice tests with different scoring rules // Acta Psychologica. – 2003. – 112. – pp. 207-220.
15.
Espinosa M. P., Gardeazabal J. Optimal correction for guessing in multiple-choice tests // Journal of Mathematical Psychology. – 2010. – 54. – pp. 415-425.
16.
Vanderoost J., Janssen R., Eggermont J., Callens R., De Laet T. Elimination testing with adapted scoring reduces guessing and anxiety in multiple-choice assessments, but does not increase grade average in comparison with negative marking // PLoS ONE. – 2018. – 13(10). – p. E0203931. DOI: 10.1371/journal.pone.0203931.
17.
Nurkova V. V., Gofman A. A. Zabyvanie: problema nalichiya sleda pamyati, ego dostupnosti i namerennogo kontrolya // Natsional'nyi psikhologicheskii zhurnal. – 2016. – № 3(23). – S. 64–74. DOI: 10.11621/npj.2016.0309.
18.
Nurkova V.V., Gofman A.A. Zabyvanie: problema nalichiya sleda pamyati, ego dostupnosti i namerennogo kontrolya // Natsional'nyi psikhologicheskii zhurnal. – 2016. – № 4(24). – S. 3–13. DOI: 10.11621/npj.2016.0401.
19.
Bjork E. L., Little J. L., Storm B. C. Multiple-choice testing as a desired difficulty in the classroom // Journal of Applied Research in Memory and Cognition. – 2014. – 3(3). – pp. 165-170.
20.
Bjork E. L., Soderstrom N. C., Little J. L. Can multiple-choice testing induce desirable difficulties? Evidence from the Laboratory and the Classroom // The American Journal of Psychology. – 2015. – 128(2). – pp. 229-239.
21.
Little J. L. The role of multiple-choice tests in increasing access to difficult-to-retrieve information // Journal of Cognitive Psychology. – 2018. – 30 (5-6). – pp. 520-531.
22.
Smith M. K., Wood W. B., Adams W. K., Wieman C., Knight J. K., Guild N. et al. Why peer discussion improves student performance on in-class concept questions // Science. – 2009. – 323. – pp. 122-124.
23.
Butler A., Roediger H. L. Feedback enhances the positive effects and reduces the negative effects of multiple-choice testing // Memory & Cognition. – 2008. – 36(3). – pp. 604-616.
24.
Nickerson R. S.,Butler S. F., Carlin M. T. Knowledge assessment: Squeezing information from multiple-choice testing // Journal of Experimental Psychology: Applied. – 2015. – 21(2). – pp. 167-177.
25.
Nicol D. E-assessment by design: using multiple-choice tests to good effect // Journal of Further and Higher Education. – 2007. – 31(1). – pp. 53-64.
26.
Dehnad A., Nasser H., Hosseini A. F. A comparison between three and four option multiple choice questions // Procedia-Social and Behavioral Sciences. – 2014. – 98. – pp. 398-403.
27.
Lesage E., Valcke M., Sabbe E. Scoring methods for multiple choice assessment in higher education-Is it still a matter of number right scoring or negative marking? // Studies in Educational Evaluation. – 2013. – 39. – pp. 188–193.
28.
Kubinger K. D., Holocher-Ert S., Reif M., Hohensinn C., Frebort M. On minimizing guessing effects on multiple-choice items: Superiority of a two solutions and three distractors item format to a one solution and five distractors item format//International Journal of Selection and Assessment. – 2010. – 18(1). – pp. 111-115.
29.
Macready G. B., Dayton C. M. The use of probabilistic models in the assessment of mastery // Journal of Educational Statistics. – 1977. – 2. – pp. 99-120.
30.
Van der Linden W. J. Forgetting, guessing, and mastery: The MacReady and Dayton models revisited and compared with a latent trait approach // Journal of Educational Statistics. – 1978. – 3(4). – pp. 305-317.
31.
Lord F. M., Novick M. R. Statistical theories of mental test scores. – Reading, MA: Addison Wesley, 1974. – 592 p.
32.
Rasch G. Probabilistic models for some intelligence and attainment tests. – Chicago: The University of Chicago Press, 1980. – 224 p.
33.
Kulinich A. A. Komp'yuternye sistemy modelirovaniya kognitivnykh kart: podkhody i metody // Problemy upravleniya. – 2014. – № 3. – S. 2-16.
34.
Kulinich A. A. Semioticheskie kognitivnye karty. Ch. 1. Kognitivnyi i semioticheskii podkhody v informatike i upravlenii // Problemy upravleniya. – 2016. – № 1. – S. 2-10.
35.
Kulinich A. A. Semioticheskie kognitivnye karty. Ch. 1. Osnovnye opredeleniya i algoritmy // Problemy upravleniya. – 2016. – № 2. – S. 24-40.
36.
Zhilov R. A. Optimizatsiya kognitivnoi karty dlya zadach prognozirovaniya // Kibernetika i programmirovanie. – 2015. – № 5. – S.128-135. DOI: 10.7256/2306-4196.2015.5.16592.
37.
Martyshenko S. N., Martyshenko N. S. Informatsionnaya tekhnologiya postroeniya kognitivnykh modelei // Programmnye sistemy i vychislitel'nye metody. – 2016. – № 4. – S. 362-374. DOI: 10.7256/2305-6061.2016.4.21456.
38.
Kitchin R. M. Cognitive maps: what are they and why study them? // Journal of Experimental Psychology. – 1994. – 14(1). – p. 1-19.
39.
Tolman E. C. Cognitive maps in rats and men // Psychological Review. – 1948. – 55(4). – pp. 189-208.
40.
Singpurwalla N. D., Booker J. M. Membership functions and probability measures of fuzzy sets // Journal of the American Statistical Association. – 2004. DOI: 10.1198/016214504000001196.
41.
Zadeh L. A. Toward a perception-based theory of probabilistic reasoning with imprecise probabilities // Journal of Statistical Planning and Inference. – 2002. – 105. – pp. 233-264.
42.
Zadeh L. A. Fuzzy possibilities // Information Processing & Management. – 1984. – 20(3). – pp. 363-372.
43.
Zadeh L. A. Fuzzy sets // Information and Control. – 1965. – 8. – pp. 338-353.
44.
Zadeh L. A. Fuzzy sets as a basis for a theory of possibility // Fuzzy Sets and Systems. – 1978. – 1. – pp. 3-28.
45.
Kulikovskikh I. M., Prokhorov S. A., Suchkova S. A., Matytsin E. V. Kompleksnaya sistema kollaborativnogo obucheniya na osnove nechetkikh modelei dlya opisaniya povedeniya sistem s chastichnym znaniem // Izvestiya SNTs RAN. – 2016. – t. 18, № 4(4). – S. 760-765.
46.
Zadeh L. A. Interval type-2 fuzzy logic systems: Theory and design // Inf. Sci. – 1971. – 3. – pp. 159-176.
47.
Bustince H., Fernandez J., Hagras H., Pagola M., Barrenechea E. Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: Towards a wider view on their relationship // IEEE Tran. On Fuzzy Sets. – 2014. DOI: 10.1109/TFUZZ.2014.2362149